ASSIGNMENT SET-I

Mathematics: Semester-II

M.Sc (CBCS)

Department of Mathematics

Mugberia Gangadhar Mahavidyalaya

PAPER - MTM-206

Paper: General Topology

- **1.** A topological space X is compact if and only if for every collection C of closed sets in X having finite intersection property.
- **2.** Show that every path connected space is a connected space .Is converse also true? Explain.
- 3. Examine the compactness of the following sets over the interval (0,1)

1.
$$\left\{ \left(sin^2\left(\frac{n\pi}{100}\right), cos^2\left(\frac{n\pi}{100}\right) \right) : n \in \mathbb{N} \right\}$$

2.
$$\left\{ \left(\frac{1}{2}e^{-\pi}, 1 - \frac{1}{(n+1)^2} \right) : n \in \mathbb{N} \right\}$$

4. Let X and Y be two topological space $f: X \to Y$ be a mapping then following are equivalent

(a)f is continuous

(b) for every closed set B of Y the set $f^{-1}(B)$ is closed in X.

5. Let two topologies τ_1 and τ_2 on a non empty set X and if β_1 and β_2 are two basis of τ_1 and τ_2 respectively. Then following are equivalent....

(i)
$$\tau_1 \subset \tau_2$$

(ii)For every $x \in B_1, B_1 \in \beta_1 \exists$ element B_2 of β_2 such that $x \in B_2 \subset B_1$

6. Let X be a metrizable topological space. Show that following are equivalent

(a) Every continuous function f: X → ℝ is bounded.
(b) X is limit point compact.

7. Let A be a connected subspace of X If $A \subset B \subset \overline{A}$ then B is also connected.

8. Show that k-th topology is finer than the standard topology.

9. Define quotient topology

10. Show that every compact Hausdorff space is normal space.

11. Consider the set N with the family \Tau of its subset consisting φ and all subsets of the form

$$A_k = \{k, k + 1, k + 2, \dots \}$$
 where $k = 1, 2, 3 \dots$

show that T is a topology.

12. Discuss the connectedness of the following sets-

$$\mathsf{A}.\left\{x\sin\frac{1}{x}:x\in(0,1)\right\}$$

B.
$$\{|x|: x \in (-1,1)\} \cap \{e^x: x \in R\}$$

13. Give an example of which (X_1, τ_1) is T_3 space and τ_1 is subset of τ_2 but (X_2, τ_2) is not T_3 space.

14. Let $\{A_{\alpha}\}$ be a collection of subsets of X.Let $X = \bigcup A_{\alpha}$ and $f: X \to Y$.Let f restricted to A_{α} is continuous for each α .

(a) Show that if the collection is finite and if each A_{α} is closed then f is continuous.

(b) Find the example where the collection A_{α} is infinite and each A_{α} is closed but f is not continuous.

15. Show that every T_1 space is T_0 space but the converse is not true in general (give example).

16. Show that X is Hausdorff space iff the diagonal $\Delta = \{(x, x) : x \in X\}$ is closed in $X \times X$.

17. If a topological space is T_2 space then every convergence sequence has a unique limit. But this may not true in genera (give example)

_End_____